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Abstract — The frequency-variant characteristics of
silicon substrate were physically modeled, analytically
investigated, and experimentally verified. The scalable circuit
model parameter extraction methodology was newly
developed. Thus, the proposed technique can provides the
efficient performance evaluations as well as the accurate
design guidelines concerned with the complicated mixed
signal integrated circuit designs.

I. INTRODUCTION

In the SOC (System On a Chip) or mixed signal ICs, the
coupling noise between circuit blocks due to a conductive
silicon substrate has a significant effect on sensitive
RF/analog circuit performance. Thus, isolation between
the sensitive or noisy circuit blocks is a crucial design
issue. Using simple separation between circuits in order to
reduce coupling noise costs too much. It is essential to
carefully understand the physical characteristics of
coupling, thereby minimizing the die area. To this date,
there have been many research efforts to characterize the
silicon substrate coupling-noise through the experimental
techniques [1][2], numerical analyses [2]-[3], and circuit
models [4]. However, these existing techniques have
deficiencies in their computation time, physical
interpretation, or model accuracy. In this work, a new
accurate, as well as, compact physical circuit model
describing silicon substrate coupling effects is presented,
analyzed, and experimentally verified.

Il. SUBSTRATE MODELING AND PARAMETER
EXTRACTION

A physical circuit model for representing the effects of
the silicon substrate was developed by using an RC
network as shown in Fig. 1. Since the silicon substrate has
frequency-variant characteristics, the circuit model
parameters have significant effects on model accuracy.
That is, for a frequency less than the first pole frequency

(f,3), a conductive effect is significant since the silicon
substrate acts as a poor conductor at low frequency. Note,
superscript x means structure type, i.e., no guard-ring (x=i),
one guard-ring (x=j), and two guard-rings (x=Kk),
respectively. In contrast, above the third zero frequency
( f,3), a capacitive effect is the dominant coupling
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(a) A test pattern layout (one guard-ring).
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(b) An equivalent circuit.
Fig.1. A structure to investigate silicon substrate
coupling.

mechanism since the substrate acts as a dielectric material
at high frequency [5]. Moreover, in the moderate
frequency range between the first pole and third zero, there
is a ftransition region. The s-parameter-based circuit
analyses of the equivalent circuits were performed and the
results are summarized in Fig. 2. Then, the circuit model
parameters were extracted by equating the measured s-
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(a) Notation of the model parameters
(“NR” means “not required’, i: without guard-ring, j: with one guard-ring, k: with two guard-rings).
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(b) Analytic expressions for different structures.
Fig. 2. Analytic expressions for substrate effect investigation.

TABLE |
EXTRACTED PARAMETERS FOR THE TEST PATTERNS (NR: NOT REQUIRED)

plQem]| x [dlAM] RI[Q] | C/[F] | RIQ] | CIF] | R[Q] | C[F]
i | 35 |8.923E+2| 1.017E-14 | 4.700E+2 | 7.884E-15 NR NR
5~8 i | 110 |1.687E+3 | 5.481E-15 | 4.700E+2 | 7.884E-15 NR NR
k | 110 |3.950E+3 | 2.368E-15 NR NR 1.984E+2 | 5.209E-14
o550 i | 110 |8.630E+3 | 5.012E-15 | 1.838E+3 | 7.219E-15 NR NR
k | 110 |4.724E+4 | 1.251E-15 NR NR 1.033E+3 | 4.747E-14
2000 i | 35 |2043E+4| 2.537E-15 | 1.033E+3 | 4.747E-14 NR NR
i | 110 |4.724E+4 | 1.251E-15 | 1.033E+3 | 4.747E-14 NR NR
parameter-data data and circuit model analytical

expressions pertinent to the characteristic frequency range.
The model parameters and their extraction procedures are
summarized in Fig. 3. The extracted parameters are
scalable with the substrate resistivity variations and
physical structure variations, i.e., spacing, size, and guard-
ring effects, in a broad frequency band. Thus, the circuit
performance with these parameter variations is very
accurately estimated.

I1l. RESULT AND VERIFICATION

In order to experimentally verify the model and analyses,
various test patterns were designed and fabricated by using
a standard CMOS process and varying the three important
parameters concerned with circuit design, i.e., silicon
substrate resistivity (i.e., 5~8 Q [ém, 25~50 Q [¢m , and
2k Q[&m ), isolation distance (35 um , 60 um , and
110 um), and guard-ring effects (i.e., without guard-ring,
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Fig. 3.

with one guard-ring, and with two guard-rings). The oxide
thickness and silicon-substrate thickness are 0.95 um and
220 um , respectively. The layout dimensions of an
example test pattern and an equivalent circuit are shown in
Fig. 1. They were measured in the frequency range of
100MHz to 20GHz with a vector network analyzer. The
parasitic effects during the measurements were de-
embedded by using the y-parameter-based de-embedding
techniques. Note, that the silicon substrate coupling is an
intricate function of the operating frequency, substrate
resistivity, separation distance, and guard-ring effects. The
model parameters for the test structures are extracted
according to the procedures shown in Fig. 3 and
summarized in Table 1. The parameters are scalable with
the substrate resistivity, distance, and guard-ring effects as
shown in Fig. 4. With these model parameters, HSPICE-
based s-parameters models and experiment-based s-
parameters are compared in Fig. 5. In the interesting
frequency range (about 200MHz to 15GHz), the model-
based simulation results have excellent agreement with the
experimental data as shown in Fig. 5.

IVV. CONCLUSION

The proposed circuit model and parameter extraction
methodology are extremely valuable since such intricate

Schematic description for the extraction of substrate parameters from measured s-parameters.

silicon substrate coupling phenomena can be conveniently
as well as accurately estimated at the early phase of circuit
design. That is, not only does the circuit model permit the
efficient integral simulation including both the circuits and
the silicon substrate effects with a conventional circuit
simulator such as HSPICE, but also the analytical model
equations provide very accurate design guidelines for
circuit designers. Thus, the proposed techniques readily
employed for the mixed signal IC designs.
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Fig. 4. Parameter variations with Resistivity, spacing, and
guard-ring effects.
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